Resumo

A tecnologia GPS tem sido usada para correlacionar retrospectivamente o risco de lesões às mudanças na carga de treinamento, no entanto, o uso da tecnologia GPS para planejar e monitorar a carga de treinamento durante um período de aclimatação para prevenir lesões musculoesqueléticas permanece inexplorado. Esse artigo relata a utilidade da tecnologia GPS para ajudar a desenvolver e monitorar aumentos incrementais na carga de treinamento durante a transição da baixa temporada para a temporada para reduzir lesões musculoesqueléticas. Uma série de carga mínima diária foi estabelecida com base nas cargas de treinamento observadas no ano 1 para aclimatar gradualmente os atletas de futebol ao longo um período de 5 semanas antes da temporada de competição no ano 2. Check-ins diários com dados de GPS foram usados ​​para garantir que os atletas atenderam aos padrões para atingir com segurança a carga de treinamento esperada de uma temporada competitiva. Seguindo o GPS de 5 semanas do programa de treinamento guiado uma menor prevalência geral de lesões (Ano 1: 92,6% (IC 95% = 75,7-100) vs. Ano 2: 55,2% (IC 95% = 35,7-73,6)) (p = 0,002) e taxa geral de lesão (Ano 1: 8,1 / 1000 horas de exposição (IC 95% = 5,2-12) vs 4,6 / 1000 horas de exposição (IC 95% = 2,7-7,5) no ano 2 (p = 0,08)). A redução observada na prevalência de lesões e a incidência demonstra como os dados de GPS podem ser usados ​​para projetar e monitorar de forma proativa programas de aclimatação da carga de treinamento.

REFERENCES

1. Aughey RJ. Applications of gps technologies to field sports. Int J Sports Physiol Performance 6(3): 295-310, 2011.

2. Bengtsson H, Ekstrand J, Hagglund M. Muscle injury rates in professional football increase with fixture congestion: An 11-year follow-up of the uefa champions league injury study. Br J Sports Med 47(12): 743-+, 2013.

3. Borresen J, Lambert MI. The quantification of training load, the training response and the effect on performance. Sports Med 39(9): 779-795, 2009.

4. Bourdon PC, Cardinale M, Murray A, Gastin P, Kellmann M, Varley MC, Gabbett TJ, Coutts AJ, Burgess DJ, Gregson W, Cable NT. Monitoring athlete training loads: Consensus statement. Int J Sports Physiol Performance 12: 161-170, 2017.

5. Bowen L, Gross AS, Gimpel M, Li FX. Accumulated workloads and the acute: Chronic workload ratio relate to injury risk in elite youth football players. Br J Sports Med 51(5): 452-459, 2017.
6. Buchheit M. Applying the acute: Chronic workload ratio in elite football: Worth the effort? Br J Sports Med 51(18): 1325- 1327, 2017.

7. Clemente FM, Rabbani A, Conte D, Castillo D, Afonso J, Clark CCT, Nikolaidis PT, Rosemann T, Knechtle B.
Training/match external load ratios in professional soccer players: A full-season study. Int J Environmental Res Public Health 16(17)2019.


8. Cummins C, Orr R, O'Connor H, West C. Global positioning systems (gps) and microtechnology sensors in team sports: A systematic review. Sports Med 43(10): 1025-1042, 2013.

9. Delecroix B, McCall A, Dawson B, Berthoin S, Dupont G. Workload and non-contact injury incidence in elite football players competing in european leagues. Eur J Sport Sci 18(9): 1280-1287, 2018.

10. DiStefano LJ, Dann CL, Chang CJ, Putukian M, Pierpoint LA, Currie DW, Knowles SB, Wasserman EB, Dompier TP, Comstock RD, Marshall SW, Kerr ZY. The first decade of web-based sports injury surveillance: Descriptive epidemiology of injuries in us high school girls' soccer (2005-2006 through 2013-2014) and national collegiate athletic association women's soccer (2004-2005 through 2013-2014). J Athl Train 53(9): 880-892, 2018.

11. Eckard TG, Padua DA, Hearn DW, Pexa BS, Frank BS. The relationship between training load and injury in athletes:A systematic review. Sports Med 48(8): 1929-1961, 2018.

12. Ehrmann EF, Duncan SC, Sindhusake N, Doungkamol, AW F, AD G. Gps and injury prevention in professional soccer. J Stren Con Res 30(2): 360-367, 2016. Int J Exerc Sci 14(7): 1070-1077, 2021 International Journal of Exercise Science http://www.intjexersci.com 1077

13. Griffin A, Kenny IC, Comyns TM, Lyons M. The association between the acute: Chronic workload ratio and injury and its application in team sports: A systematic review. Sports Med 50(3): 561-580, 2020.

14. Hootman JM, Dick R, Agel J. Epidemiology of collegiate injuries for 15 sports: Summary and recommendations for injury prevention initiatives. Journal of athletic training 42(2):311-319, 2007.

15. Hulin BT, Gabbett TJ. Indeed association does not equal prediction: The never-ending search for the perfect acute: Chronic workload ratio. Br J Sports Med 53(3): 144-+, 2019.

16. Hulin BT, Gabbett TJ, Lawson DW, Caputi P, Sampson JA. The acute: Chronic workload ratio predicts injury: High chronic workload may decrease injury risk in elite rugby league players. Br J Sports Med 50(4): 231-U123, 2016.

17. Jaspers A, Brink MS, Probst SGM, Frencken WGP, Helsen WF. Relationships between training load indicators and training outcomes in professional soccer. Sports Med 47(3): 533-544, 2017.

18. Jaspers A, Kuyvenhoven JP, Staes F, Frencken WGP, Helsen WF, Brink MS. Examination of the external and internal load indicators' association with overuse injuries in professional soccer players. J Sci Med Sport 21(6): 579-585, 2018.

19. Johnston R, Cahalan R, Bonnett L, Maguire M, Nevill A, Glasgow P, O'Sullivan K, Comyns T. Training load and baseline characteristics associated with new injury/pain within an endurance sporting population: A prospective study. International Journal of Sports Physiology and Performance 14(5): 590-597, 2019.

20. Junge A, Cheung K, Edwards T, Dvorak J. Injuries in youth amateur soccer and rugby players - comparison of incidence and characteristics. Br J Sports Med 38(2): 168-172, 2004.

21. Malone S, Owen A, Newton M, Mendes B, Collins KD, Gabbett TJ. The acute: Chronic workload ratio in relation to injury risk in professional soccer. J Sci Med Sport 20(6): 561-565, 2017.

22. Malone S, Roe M, Doran DA, Gabbett TJ, Collins KD. Protection against spikes in workload with aerobic fitness and playing experience: The role of the acute: Chronic workload ratio on injury risk in elite gaelic football. Int J Sports Physiol Performance 12(3): 393-401, 2017.

23. McCall A, Dupont G, Ekstrand J. Internal workload and non-contact injury: A one-season study of five teams from the uefa elite club injury study. Br J Sports Med 52(23): 1517-1522, 2018.

24. McFadden B, Walker A, Bozzini B, DJ S, Arent Sm. Comparison of internal and external training loads in male and female collegiate soccer players during practices vs. Games. J Stren Condition Res 34(4): 969-974, 2020.

25. Navalta J, Stone W, Lyons T. Ethical issues relating to scienctific discovery in exercise science. Int J Exer Sci 12(1): 1-8, 2019.

26. Op De Beeck TO, Jaspers A, Brink MS, Frencken WGP, Staes F, Davis JJ, Helsen WF. Predicting future perceived wellness in professional soccer: The role of preceding load and wellness. Int J Sports Physiol Performance 14(8): 1074-1080, 2019.

27. Padua DA, Frank B, Mathes M. Increased acute-chronic training load ratio is associated with time-loss injury in eliteyouth female soccer athletes. Med Sci Sports Exer 51(6): 517-517, 2019.


28. Sampson JA, Murray A, Williams S, Halseth T, Hanisch J, Golden G, Fullagar HHK. Injury risk-workload associations in ncaa american college football. J Sci Med Sport 21(12): 1215-1220, 2018.

29. Soligard T, Schwellnus M, Alonso JM, Bahr R, Clarsen B, Dijkstra HP, Gabbett T, Gleeson M, Hagglund M, Hutchinson MR, van Rensburg CJ, Khan KM, Meeusen R, Orchard JW, Pluim BM, Raftery M, Budgett R, Engebretsen L. How much is too much? (part 1) International olympic committee consensus statement on load in sport and risk of injury. Br J Sports Med 50(17):1030-1041, 2016.

30. Windt J, Gabbett TJ. How do training and competition workloads relate to injury? The workload-injury aetiology model. Br J Sports Med 51(5): 428-+, 2017.
 

Acessar